{ "id": "1510.01224", "version": "v1", "published": "2015-10-05T16:46:14.000Z", "updated": "2015-10-05T16:46:14.000Z", "title": "Sharp constants and optimizers for a class of the Caffarelli-Kohn-Nirenberg inequalities", "authors": [ "Nguyen Lam", "Guozhen Lu" ], "comment": "31 pages", "categories": [ "math.AP", "math.CA" ], "abstract": "In this paper, we will use a suitable tranform to investigate the sharp constants and optimizers for the following Caffarelli-Kohn-Nirenberg inequalities for a wide range of parameters $(r,p,q,s,\\mu,\\sigma)$ and $0\\leq a\\leq1$: \\begin{equation} \\left({\\displaystyle\\int} \\left\\vert u\\right\\vert ^{r}\\frac{dx}{\\left\\vert x\\right\\vert ^{s}}\\right)^{1/r}\\leq C\\left( {\\displaystyle\\int} \\left\\vert \\nabla u\\right\\vert ^{p}\\frac{dx}{\\left\\vert x\\right\\vert ^{\\mu}% }\\right) ^{a/p}\\left({\\displaystyle\\int} \\left\\vert u\\right\\vert ^{q}\\frac{dx}{\\left\\vert x\\right\\vert ^{\\sigma}% }\\right) ^{\\left( 1-a\\right) /q}. \\end{equation} We are able to compute the best constants and the explicit forms of the extremal functions in numerous cases. When $0