{ "id": "1510.00853", "version": "v1", "published": "2015-10-03T18:03:42.000Z", "updated": "2015-10-03T18:03:42.000Z", "title": "Limit cycles for a class of $\\mathbb{Z}_{2n}-$equivariant systems without infinite equilibria", "authors": [ "Isabel S. Labouriau", "Adrian C. Murza" ], "categories": [ "math.DS" ], "abstract": "We analyze the dynamics of a class of $\\mathbb{Z}_{2n}$-equivariant differential equations on the plane, depending on 4 real parameters. This study is the generalisation to $\\mathbb{Z}_{2n}$ of previous works with $\\mathbb{Z}_4$ and $\\mathbb{Z}_6$ symmetry. We reduce the problem of finding limit cycles to an Abel equation, and provide criteria for proving in some cases uniqueness and hyperbolicity of the limit cycle that surrounds either 1, $2n+1$ or $4n+1$ equilibria, the origin being always one of these points.", "revisions": [ { "version": "v1", "updated": "2015-10-03T18:03:42.000Z" } ], "analyses": { "subjects": [ "34C07" ], "keywords": [ "equivariant systems", "infinite equilibria", "equivariant differential equations", "abel equation", "cases uniqueness" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }