{ "id": "1510.00596", "version": "v1", "published": "2015-09-30T20:45:09.000Z", "updated": "2015-09-30T20:45:09.000Z", "title": "Length of an intersection", "authors": [ "Christian Delhommé", "Maurice Pouzet" ], "comment": "13 pages", "categories": [ "math.LO", "math.CO" ], "abstract": "A poset $\\bfp$ is well-partially ordered (WPO) if all its linear extensions are well orders~; the supremum of ordered types of these linear extensions is the {\\em length}, $\\ell(\\bfp)$ of $\\bfp$. We prove that if the vertex set $X$ of $\\bfp$ is infinite, of cardinality $\\kappa$, and the ordering $\\leq$ is the intersection of finitely many partial orderings $\\leq_i$ on $X$, $1\\leq i\\leq n$, then, letting $\\ell(X,\\leq_i)=\\kappa\\multordby q_i+r_i$, with $r_i<\\kappa$, denote the euclidian division by $\\kappa$ (seen as an initial ordinal) of the length of the corresponding poset~:\\[ \\ell(\\bfp)< \\kappa\\multordby\\bigotimes_{1\\leq i\\leq n}q_i+ \\Big|\\sum_{1\\leq i\\leq n} r_i\\Big|^+ \\] where $|\\sum r_i|^+$ denotes the least initial ordinal greater than the ordinal $\\sum r_i$. This inequality is optimal (for $n\\geq 2$).", "revisions": [ { "version": "v1", "updated": "2015-09-30T20:45:09.000Z" } ], "analyses": { "subjects": [ "06A06", "06A07", "03F15" ], "keywords": [ "intersection", "linear extensions", "initial ordinal greater", "partial orderings", "euclidian division" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151000596D" } } }