{ "id": "1510.00586", "version": "v1", "published": "2015-10-02T13:20:25.000Z", "updated": "2015-10-02T13:20:25.000Z", "title": "The small index property of automorphism groups of ab-initio generic structures", "authors": [ "Zaniar Ghadernezhad" ], "comment": "15 pages", "categories": [ "math.LO", "math.GR" ], "abstract": "Suppose $M$ is a countable ab-initio (uncollapsed) generic structure which is obtained from a pre-dimension function with rational coefficients. We show that if $H$ is a subgroup of $\\mbox{Aut}\\left(M\\right)$ with $\\left[\\mbox{Aut}\\left(M\\right):H\\right]<2^{\\aleph_{0}}$, then there exists a finite set $A\\subseteq M$ such that $\\mbox{Aut}_{A}\\left(M\\right)\\subseteq H$. This shows that $\\mbox{Aut}\\left(M\\right)$ has the small index property.", "revisions": [ { "version": "v1", "updated": "2015-10-02T13:20:25.000Z" } ], "analyses": { "subjects": [ "03C15", "20B07", "20B27" ], "keywords": [ "small index property", "ab-initio generic structures", "automorphism groups", "pre-dimension function", "rational coefficients" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }