{ "id": "1510.00536", "version": "v1", "published": "2015-10-02T09:19:59.000Z", "updated": "2015-10-02T09:19:59.000Z", "title": "Correlations between real conjugate algebraic numbers", "authors": [ "Friedrich Götze", "Dzianis Kaliada", "Dmitry Zaporozhets" ], "comment": "6 pages", "categories": [ "math.NT", "math.CA", "math.PR" ], "abstract": "For $B\\subset\\mathbb{R}^k$ denote by $\\Phi_k(Q;B)$ the number of ordered $k$-tuples in $B$ of real conjugate algebraic numbers of degree $\\leq n$ and naive height $\\leq Q$. We show that $$ \\Phi_k(Q;B) = \\frac{(2Q)^{n+1}}{2\\zeta(n+1)} \\int_{B} \\rho_k(\\mathbf{x})\\,d\\mathbf{x} + O\\left(Q^n\\right),\\quad Q\\to \\infty, $$ where the function $\\rho_k$ will be given explicitly. If $n=2$, then an additional factor $\\log Q$ appears in the reminder term.", "revisions": [ { "version": "v1", "updated": "2015-10-02T09:19:59.000Z" } ], "analyses": { "subjects": [ "11N45", "11C08", "60G55", "11R80" ], "keywords": [ "real conjugate algebraic numbers", "correlations", "additional factor", "reminder term", "naive height" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151000536G" } } }