{ "id": "1510.00511", "version": "v1", "published": "2015-10-02T07:43:36.000Z", "updated": "2015-10-02T07:43:36.000Z", "title": "Simple polytopes without small separators", "authors": [ "Lauri Loiskekoski", "Günter M. Ziegler" ], "comment": "7 pages", "categories": [ "math.MG", "math.CO" ], "abstract": "We show that by cutting off the vertices and then the edges of neighborly cubical polytopes, one obtains simple 4-dimensional polytopes with n vertices such that all separators of the graph have size at least $\\Omega(n/\\log^{3/2}n)$. This disproves a conjecture by Kalai from 1991/2004.", "revisions": [ { "version": "v1", "updated": "2015-10-02T07:43:36.000Z" } ], "analyses": { "subjects": [ "52B05", "52B11", "05C12", "05C40" ], "keywords": [ "small separators", "simple polytopes", "neighborly cubical polytopes" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151000511L" } } }