{ "id": "1510.00282", "version": "v1", "published": "2015-10-01T15:27:29.000Z", "updated": "2015-10-01T15:27:29.000Z", "title": "On the $b$-ary expansions of $\\log (1 + \\frac{1}{a})$ and ${\\mathrm e}$", "authors": [ "Yann Bugeaud", "Dong Han Kim" ], "comment": "17 pages", "categories": [ "math.NT" ], "abstract": "Let $b \\ge 2$ be an integer and $\\xi$ an irrational real number. We prove that, if the irrationality exponent of $\\xi$ is equal to $2$ or slightly greater than $2$, then the $b$-ary expansion of $\\xi$ cannot be `too simple', in a suitable sense. Our result applies, among other classical numbers, to badly approximable numbers, non-zero rational powers of ${\\mathrm e}$, and $\\log (1 + \\frac{1}{a})$, provided that the integer $a$ is sufficiently large. It establishes an unexpected connection between the irrationality exponent of a real number and its $b$-ary expansion.", "revisions": [ { "version": "v1", "updated": "2015-10-01T15:27:29.000Z" } ], "analyses": { "subjects": [ "11A63", "11J82", "68R15" ], "keywords": [ "ary expansion", "irrationality exponent", "irrational real number", "non-zero rational powers", "result applies" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151000282B" } } }