{ "id": "1510.00060", "version": "v1", "published": "2015-09-30T22:37:52.000Z", "updated": "2015-09-30T22:37:52.000Z", "title": "Almost partitioning a 3-edge-coloured $K_{n,n}$ into 5 monochromatic cycles", "authors": [ "Richard Lang", "Oliver Schaudt", "Maya Stein" ], "categories": [ "math.CO" ], "abstract": "We show that for any colouring of the edges of the complete bipartite graph $K_{n,n}$ with 3 colours there are 5 disjoint monochromatic cycles which together cover all but $o(n)$ of the vertices and 18 disjoint monochromatic cycles which together cover all vertices.", "revisions": [ { "version": "v1", "updated": "2015-09-30T22:37:52.000Z" } ], "analyses": { "subjects": [ "05C69", "05C75", "05C38", "F.2.2" ], "keywords": [ "disjoint monochromatic cycles", "complete bipartite graph", "partitioning" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }