{ "id": "1509.08614", "version": "v1", "published": "2015-09-29T07:18:32.000Z", "updated": "2015-09-29T07:18:32.000Z", "title": "Free infinite divisibility for powers of random variables", "authors": [ "Takahiro Hasebe" ], "comment": "23 pages", "categories": [ "math.PR", "math.OA" ], "abstract": "We prove that $X^r$ is free regular (stronger than freely infinitely divisible) if: (1) $X$ follows a free Poisson distribution without an atom at 0 and $r\\in(-\\infty,0]\\cup[1,\\infty)$; (2) $X$ follows a free Poisson distribution with an atom at 0 and $r\\geq1$; (3) $X$ follows a mixture of some HCM distributions and $|r|\\geq1$; (4) $X$ follows some beta distributions and $r$ is taken from some interval. In particular, if $S$ is a standard semicircular element then $|S|^r$ is freely infinitely divisible for $r\\in(-\\infty,0]\\cup[2,\\infty)$. Also we consider the symmetrization of the above probability measures, and in particular show that $|S|^r \\,{\\rm sign}(S)$ is freely infinitely divisible for $r\\geq2$. Therefore $S^n$ is freely infinitely divisible for every $n\\in\\mathbb{N}$. The results on free Poisson and semicircular random variables have a good correspondence with classical ID properties of powers of gamma and normal random variables.", "revisions": [ { "version": "v1", "updated": "2015-09-29T07:18:32.000Z" } ], "analyses": { "subjects": [ "46L54", "60E07" ], "keywords": [ "free infinite divisibility", "freely infinitely divisible", "free poisson distribution", "semicircular random variables", "standard semicircular element" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150908614H" } } }