{ "id": "1509.08384", "version": "v1", "published": "2015-09-28T16:33:23.000Z", "updated": "2015-09-28T16:33:23.000Z", "title": "A multiscale finite element method for oscillating Neumann problem on rough domain", "authors": [ "P. B. Ming", "X. Xu" ], "categories": [ "math.NA" ], "abstract": "We develop a new multiscale finite element method for Laplace equation with oscillating Neumann boundary conditions on rough boundaries. The key point is the introduction of a new boundary condition that incorporates both the microscopically geometrical and physical information of the rough boundary. We prove the method has optimal convergence rate in the energy norm with a weak resonance term for periodic roughness. Numerical results are reported for both periodic and nonperiodic roughness.", "revisions": [ { "version": "v1", "updated": "2015-09-28T16:33:23.000Z" } ], "analyses": { "keywords": [ "multiscale finite element method", "oscillating neumann problem", "rough domain", "rough boundary", "oscillating neumann boundary conditions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }