{ "id": "1509.08138", "version": "v1", "published": "2015-09-27T20:43:23.000Z", "updated": "2015-09-27T20:43:23.000Z", "title": "On the strong approximations of partial sums of f(nkx)", "authors": [ "Marko Raseta" ], "categories": [ "math.PR" ], "abstract": "We prove a strong invariance principle for the sums PN k=1 f(nkx), where f is a smooth periodic function on R and (nk)k?1 is an increasing random sequence. Our results show that in contrast to the classical Salem-Zygmund theory, the asymptotic properties of lacunary series with random gaps can be described very precisely without any assumption on the size of the gaps.", "revisions": [ { "version": "v1", "updated": "2015-09-27T20:43:23.000Z" } ], "analyses": { "keywords": [ "partial sums", "strong approximations", "strong invariance principle", "smooth periodic function", "sums pn" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150908138R" } } }