{ "id": "1509.07832", "version": "v1", "published": "2015-09-25T18:57:28.000Z", "updated": "2015-09-25T18:57:28.000Z", "title": "New Formulas for Dyck Paths in a Rectangle", "authors": [ "Jose Eduardo Blazek" ], "journal": "Combinatorics on Words, Volume 9304 of the series Lecture Notes in Computer Science, pp 85-96, Date: 27 August 2015, Springer", "categories": [ "math.CO" ], "abstract": "We consider the problem of counting the set of $\\mathscr{D}_{a,b}$ of Dyck paths inscribed in a rectangle of size $a\\times b$. They are a natural generalization of the classical Dyck words enumerated by the Catalan numbers. By using Ferrers diagrams associated to Dyck paths, we derive formulas for the enumeration of $\\mathscr{D}_{a,b}$ with $a$ and $b$ non relatively prime, in terms of Catalan numbers.", "revisions": [ { "version": "v1", "updated": "2015-09-25T18:57:28.000Z" } ], "analyses": { "keywords": [ "dyck paths", "catalan numbers", "non relatively prime", "natural generalization", "classical dyck words" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150907832B" } } }