{ "id": "1509.07664", "version": "v1", "published": "2015-09-25T10:27:42.000Z", "updated": "2015-09-25T10:27:42.000Z", "title": "On a dual property of the maximal operator on weighted variable $L^p$ spaces", "authors": [ "Andrei K. Lerner" ], "categories": [ "math.CA" ], "abstract": "L. Diening \\cite{D1} obtained the following dual property of the maximal operator $M$ on variable Lebesque spaces $L^{p(\\cdot)}$: if $M$ is bounded on $L^{p(\\cdot)}$, then $M$ is bounded on $L^{p'(\\cdot)}$. We extend this result to weighted variable Lebesque spaces.", "revisions": [ { "version": "v1", "updated": "2015-09-25T10:27:42.000Z" } ], "analyses": { "keywords": [ "maximal operator", "dual property", "weighted variable lebesque spaces" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150907664L" } } }