{ "id": "1509.07656", "version": "v1", "published": "2015-09-25T09:53:07.000Z", "updated": "2015-09-25T09:53:07.000Z", "title": "The Peter-Weyl Theorem for SU(1|1)", "authors": [ "C. Carmeli", "R. Fioresi", "S. D. Kwok" ], "categories": [ "math.RT", "math-ph", "math.MP" ], "abstract": "We study a generalization of the results \\in \\cite{cfk} to the case of $SU(1|1)$ interpreted as the supercircle $S^{1|2}$. We describe all of its finite dimensional complex irreducible representations, we give a reducibility result for representations not containing the trivial character, and we compute explicitly the corresponding matrix elements. In the end we give the Peter-Weyl theorem for $S^{1|2}$.", "revisions": [ { "version": "v1", "updated": "2015-09-25T09:53:07.000Z" } ], "analyses": { "keywords": [ "peter-weyl theorem", "finite dimensional complex irreducible representations", "corresponding matrix elements", "trivial character", "reducibility result" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150907656C" } } }