{ "id": "1509.07595", "version": "v1", "published": "2015-09-25T06:22:51.000Z", "updated": "2015-09-25T06:22:51.000Z", "title": "Uniqueness of positive solutions of a $n$-Laplace equation in a ball in $\\mathbb{r}^n$ with exponential nonlinearity", "authors": [ "Adimurthi", "Karthik A", "Jacques Giacomoni" ], "categories": [ "math.AP", "math.CA" ], "abstract": "Let $n \\geq 2$ and $\\Omega \\subset \\mathbb{R}^n$ be a bounded domain. Then by Trudinger-Moser embedding, $W_0^{1,n}(\\Omega)$ is embedded in an Orlicz space consisting of exponential functions. Consider the corresponding semi linear $n$-Laplace equation with critical or sub-critical exponential nonlinearity in a ball $B(R)$ with dirichlet boundary condition. In this paper, we prove that under suitable growth conditions on the nonlinearity, there exists an $\\gamma_0 > 0$, and a corresponding $R_0(\\gamma_0 ) > 0$ such that for all $0 < R < R_0$ , the problem admits a unique non degenerate positive radial solution $u$ with $\\|u\\|_{\\infty}\\geq \\gamma_0$.", "revisions": [ { "version": "v1", "updated": "2015-09-25T06:22:51.000Z" } ], "analyses": { "keywords": [ "exponential nonlinearity", "laplace equation", "positive solutions", "non degenerate positive radial solution", "unique non degenerate positive radial" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }