{ "id": "1509.07210", "version": "v1", "published": "2015-09-24T02:11:40.000Z", "updated": "2015-09-24T02:11:40.000Z", "title": "A noncommutative framework for topological insulators", "authors": [ "Chris Bourne", "Alan L. Carey", "Adam Rennie" ], "comment": "28 pages", "categories": [ "math-ph", "math.KT", "math.MP", "math.OA" ], "abstract": "We study topological insulators, regarded as physical systems giving rise to topological invariants determined by symmetries both linear and anti-linear. Our perspective is that of noncommutative index theory of operator algebras. In particular we formulate the index problems using Kasparov theory, both complex and real. We show that the periodic table of topological insulators and superconductors can be realised as a real or complex index pairing of a Kasparov module capturing internal symmetries of the Hamiltonian with a spectral triple encoding the geometry of the sample's (possibly noncommutative) Brillouin zone.", "revisions": [ { "version": "v1", "updated": "2015-09-24T02:11:40.000Z" } ], "analyses": { "keywords": [ "topological insulators", "noncommutative framework", "kasparov module capturing internal symmetries", "spectral triple", "physical systems giving rise" ], "publication": { "doi": "10.1142/S0129055X16500045", "journal": "Reviews in Mathematical Physics", "year": 2016, "month": "Apr", "volume": 28, "number": 2, "pages": 1650004 }, "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016RvMaP..2850004B", "inspire": 1394738 } } }