{ "id": "1509.07159", "version": "v1", "published": "2015-09-23T21:06:24.000Z", "updated": "2015-09-23T21:06:24.000Z", "title": "From gap probabilities in random matrix theory to eigenvalue expansions", "authors": [ "Thomas Bothner" ], "comment": "50 pages, 10 figures", "categories": [ "math-ph", "math.MP", "math.PR", "math.SP", "nlin.SI" ], "abstract": "We present a method to derive asymptotics of eigenvalues for trace-class integral operators $K:L^2(J;d\\lambda)\\circlearrowleft$, acting on a single interval $J\\subset\\mathbb{R}$, which belong to the ring of integrable operators \\cite{IIKS}. Our emphasis lies on the behavior of the spectrum $\\{\\lambda_i(J)\\}_{i=0}^{\\infty}$ of $K$ as $|J|\\rightarrow\\infty$ and $i$ is fixed. We show that this behavior is intimately linked to the analysis of the Fredholm determinant $\\det(I-\\gamma K)|_{L^2(J)}$ as $|J|\\rightarrow\\infty$ and $\\gamma\\uparrow 1$ in a Stokes type scaling regime. Concrete asymptotic formul\\ae\\, are obtained for the eigenvalues of Airy and Bessel kernels in random matrix theory.", "revisions": [ { "version": "v1", "updated": "2015-09-23T21:06:24.000Z" } ], "analyses": { "subjects": [ "45C05", "45M05", "82B26", "33C10", "33C45" ], "keywords": [ "random matrix theory", "eigenvalue expansions", "gap probabilities", "trace-class integral operators", "stokes type scaling regime" ], "publication": { "doi": "10.1088/1751-8113/49/7/075204", "journal": "Journal of Physics A Mathematical General", "year": 2016, "month": "Feb", "volume": 49, "number": 7, "pages": "075204" }, "note": { "typesetting": "TeX", "pages": 50, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016JPhA...49g5204B" } } }