{ "id": "1509.07084", "version": "v1", "published": "2015-09-23T18:24:21.000Z", "updated": "2015-09-23T18:24:21.000Z", "title": "Dilations, Wandering Subspaces, and Inner Functions", "authors": [ "M. Bhattacharjee", "J. Eschmeier", "Dinesh K. Keshari", "Jaydeb Sarkar" ], "comment": "14 pages", "categories": [ "math.FA", "math.CV", "math.OA" ], "abstract": "The object of this paper is to study wandering subspaces for commuting tuples of operators on Hilbert spaces. It is shown that, for a large class of analytic functional Hilbert spaces on the unit ball, wandering subspaces for restrictions of the multiplication tuple $M_z = (M_{z_1}, \\ldots ,M_{z_n})$ can be described in terms of suitable inner multipliers. Necessary and sufficient conditions for the existence of generating wandering subspaces are given. Along the way we prove a useful uniqueness result for minimal dilations of pure row contractions.", "revisions": [ { "version": "v1", "updated": "2015-09-23T18:24:21.000Z" } ], "analyses": { "subjects": [ "30H05", "46E22", "46M05", "46N99", "47A13", "47A15", "47A20", "47A45", "47B32", "47B38" ], "keywords": [ "inner functions", "analytic functional hilbert spaces", "pure row contractions", "study wandering subspaces", "unit ball" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150907084B" } } }