{ "id": "1509.07026", "version": "v1", "published": "2015-09-23T15:18:31.000Z", "updated": "2015-09-23T15:18:31.000Z", "title": "Stationary random graphs with prescribed iid degrees on a spatial Poisson process", "authors": [ "Maria Deijfen" ], "journal": "Electronic Communications in Probability 14, 81-89 (2009)", "categories": [ "math.PR" ], "abstract": "Let $[\\mathcal{P}]$ be the points of a Poisson process on $\\mathbb{R}^d$ and $F$ a probability distribution with support on the non-negative integers. Models are formulated for generating translation invariant random graphs with vertex set $[\\mathcal{P}]$ and iid vertex degrees with distribution $F$, and the length of the edges is analyzed. The main result is that finite mean for the total edge length per vertex is possible if and only if $F$ has finite moment of order $(d+1)/d$.", "revisions": [ { "version": "v1", "updated": "2015-09-23T15:18:31.000Z" } ], "analyses": { "keywords": [ "stationary random graphs", "spatial poisson process", "prescribed iid degrees", "generating translation invariant random graphs", "iid vertex degrees" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150907026D" } } }