{ "id": "1509.06913", "version": "v1", "published": "2015-09-23T10:24:22.000Z", "updated": "2015-09-23T10:24:22.000Z", "title": "A coloring of the square of the 8-cube with 13 colors", "authors": [ "Janne I. Kokkala", "Patric R. J. Östergård" ], "comment": "3 pages", "categories": [ "math.CO", "cs.IT", "math.IT" ], "abstract": "Let $\\chi_{\\bar{k}}(n)$ be the number of colors required to color the $n$-dimensional hypercube such that no two vertices with the same color are at a distance at most $k$. In other words, $\\chi_{\\bar{k}}(n)$ is the minimum number of binary codes with minimum distance at least $k+1$ required to partition the $n$-dimensional Hamming space. By giving an explicit coloring, it is shown that $\\chi_{\\bar{2}}(8)=13$.", "revisions": [ { "version": "v1", "updated": "2015-09-23T10:24:22.000Z" } ], "analyses": { "keywords": [ "minimum number", "dimensional hypercube", "dimensional hamming space", "minimum distance" ], "note": { "typesetting": "TeX", "pages": 3, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150906913K" } } }