{ "id": "1509.06688", "version": "v1", "published": "2015-09-22T17:15:18.000Z", "updated": "2015-09-22T17:15:18.000Z", "title": "Equivalence of $\\mathbb{Z}_{4}$-actions on handlebodies of genus $g$", "authors": [ "Jesse Prince-Lubawy" ], "categories": [ "math.GN", "math.AT", "math.GT" ], "abstract": "In this paper we consider all orientation-preserving $\\mathbb{Z}_{4}$-actions on $3$-dimensional handlebodies $V_g$ of genus $g>0$. We study the graph of groups $(\\Gamma($v$),\\mathbf{G(v)})$, which determines a handlebody orbifold $V(\\Gamma($v$),{\\mathbf{G(v)}})\\simeq{V_g}/\\mathbb{Z}_{4}$. This algebraic characterization is used to enumerate the total number of $\\mathbb{Z}_{4}$ group actions on such handlebodies, up to equivalence.", "revisions": [ { "version": "v1", "updated": "2015-09-22T17:15:18.000Z" } ], "analyses": { "subjects": [ "57M60" ], "keywords": [ "equivalence", "total number", "dimensional handlebodies", "algebraic characterization", "group actions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150906688P" } } }