{ "id": "1509.06294", "version": "v1", "published": "2015-09-21T16:38:05.000Z", "updated": "2015-09-21T16:38:05.000Z", "title": "Rectifiability of harmonic measure", "authors": [ "Jonas Azzam", "Steve Hofmann", "José María Martell", "Svitlana Mayboroda", "Mihalis Mourgoglou", "Xavier Tolsa", "Alexander Volberg" ], "comment": "arXiv admin note: text overlap with arXiv:1505.06088, arXiv:1507.04409", "categories": [ "math.CA", "math.AP" ], "abstract": "In the present paper we prove that for any open connected set $\\Omega\\subset\\mathbb{R}^{n+1}$, $n\\geq 1$, and any $E\\subset \\partial \\Omega$ with $0<\\mathcal{H}^n(E)<\\infty$ absolute continuity of the harmonic measure $\\omega$ with respect to the Hausdorff measure on $E$ implies that $\\omega|_E$ is rectifiable.", "revisions": [ { "version": "v1", "updated": "2015-09-21T16:38:05.000Z" } ], "analyses": { "subjects": [ "31A15", "31B15", "30C85", "42B37", "31B05", "35J08", "42B20", "28A75", "28A78" ], "keywords": [ "harmonic measure", "rectifiability", "open connected set", "absolute continuity" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150906294A" } } }