{ "id": "1509.06280", "version": "v1", "published": "2015-09-21T15:44:56.000Z", "updated": "2015-09-21T15:44:56.000Z", "title": "On Gelfand-Kirillov conjecture for some W-algebras", "authors": [ "Alexey Petukhov" ], "categories": [ "math.RT", "math.RA" ], "abstract": "Consider the W-algebra $W$ attached to the smallest nilpotent orbit in a simple Lie algebra $\\frak g$ over an algebraically closed field of characteristic 0. We show that if an analogue of the Gelfand-Kirillov conjecture holds for such a W-algebra then it holds for the universal enveloping algebra $\\mathrm U(\\frak g)$. This together with a result of A. Premet implies that the analogue of the Gelfand-Kirillov conjecture fails for some $W$-algebras attached to some nilpotent orbits in Lie algebras of types $B_n~(n\\ge 3)$, $D_n~(n\\ge 4)$, $E_6, E_7, E_8$, $F_4$.", "revisions": [ { "version": "v1", "updated": "2015-09-21T15:44:56.000Z" } ], "analyses": { "keywords": [ "simple lie algebra", "smallest nilpotent orbit", "gelfand-kirillov conjecture holds", "gelfand-kirillov conjecture fails", "universal enveloping algebra" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150906280P" } } }