{ "id": "1509.06205", "version": "v1", "published": "2015-09-21T12:42:18.000Z", "updated": "2015-09-21T12:42:18.000Z", "title": "An algebraic approach to the Hubbard model", "authors": [ "Marius de Leeuw", "Vidas Regelskis" ], "comment": "9 pages", "categories": [ "math-ph", "cond-mat.str-el", "hep-th", "math.MP", "nlin.SI" ], "abstract": "We study the algebraic structure of an integrable Hubbard-Shastry type lattice model associated with the centrally extended su(2|2) superalgebra. This superalgebra underlies Beisert's AdS/CFT worldsheet R-matrix and Shastry's R-matrix. The considered model specializes to the one-dimensional Hubbard model in a certain limit. We demonstrate that Yangian symmetries of the R-matrix specialize to the Yangian symmetry of the Hubbard model found by Korepin and Uglov. Moreover, we show that the Hubbard model Hamiltonian has an algebraic interpretation as the so-called secret symmetry. We also discuss Yangian symmetries of the A and B models introduced by Frolov and Quinn.", "revisions": [ { "version": "v1", "updated": "2015-09-21T12:42:18.000Z" } ], "analyses": { "keywords": [ "hubbard model", "algebraic approach", "hubbard-shastry type lattice model", "yangian symmetry", "superalgebra underlies beiserts ads/cft worldsheet" ], "publication": { "doi": "10.1016/j.physleta.2015.12.013" }, "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1394218 } } }