{ "id": "1509.05149", "version": "v1", "published": "2015-09-17T07:26:00.000Z", "updated": "2015-09-17T07:26:00.000Z", "title": "Iterated scaling limits for aggregation of randomized INAR(1) processes with idiosyncratic Poisson innovations", "authors": [ "Matyas Barczy", "Fanni Nedényi", "Gyula Pap" ], "comment": "48 pages", "categories": [ "math.PR" ], "abstract": "We discuss joint temporal and contemporaneous aggregation of $N$ independent copies of strictly stationary INteger-valued AutoRegressive processes of order 1 (INAR(1)) with random coefficient $\\alpha \\in (0, 1)$ and with idiosyncratic Poisson innovations. Assuming that $\\alpha$ has a density function of the form $\\psi(x) (1 - x)^\\beta$, $x \\in (0, 1)$, with $\\lim_{x\\uparrow 1} \\psi(x) = \\psi_1 \\in (0, \\infty)$, different limits of appropriately centered and scaled aggregated partial sums are shown to exist for $\\beta \\in (-1, 0)$, $\\beta = 0$, $\\beta \\in (0, 1)$ or $\\beta \\in (1, \\infty)$, when taking first the limit as $N \\to \\infty$ and then the time scale $n \\to \\infty$, or vice versa. The paper extends some of the results in Pilipauskait\\.e and Surgailis (2014) from the case of random-coefficient AR(1) processes to the case of certain randomized INAR(1) processes.", "revisions": [ { "version": "v1", "updated": "2015-09-17T07:26:00.000Z" } ], "analyses": { "subjects": [ "60F05", "60J80", "60G52", "60G15", "60G22" ], "keywords": [ "idiosyncratic poisson innovations", "iterated scaling limits", "randomized inar", "aggregation", "joint temporal" ], "note": { "typesetting": "TeX", "pages": 48, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150905149B" } } }