{ "id": "1509.04985", "version": "v1", "published": "2015-09-16T18:02:12.000Z", "updated": "2015-09-16T18:02:12.000Z", "title": "Self-maps under the compact-open topology", "authors": [ "Richard Lupton", "Max F. Pitz" ], "comment": "22 pages", "categories": [ "math.GN" ], "abstract": "This paper investigates the space $C_k(\\omega^*,\\omega^*)$, the space of continuous self-maps on the Stone-\\v{C}ech remainder of the integers, $\\omega^*$, equipped with the compact-open topology. Our main results are that (1) $C_k(\\omega^*,\\omega^*)$ is Baire, (2) Stone-\\v{C}ech extensions of injective maps on $\\omega$ form a dense set of weak $P$-points in $C_k(\\omega^*,\\omega^*)$, (3) it is independent of ZFC whether $C_k(\\omega^*,\\omega^*)$ contains $P$-points, and that (4) $C_k(\\omega^*,\\omega^*)$ is not an $F$-space, but contains, as $\\omega^*$, no non-trivial convergent sequences.", "revisions": [ { "version": "v1", "updated": "2015-09-16T18:02:12.000Z" } ], "analyses": { "subjects": [ "54C35", "54D35", "54G05", "54E52" ], "keywords": [ "compact-open topology", "non-trivial convergent sequences", "main results", "dense set", "extensions" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }