{ "id": "1509.04873", "version": "v1", "published": "2015-09-16T10:20:07.000Z", "updated": "2015-09-16T10:20:07.000Z", "title": "Power exponential velocity distributions in disordered porous media", "authors": [ "Maciej Matyka", "Jarosław Gołembiewski", "Zbigniew Koza" ], "comment": "4 pages, 3 figures", "categories": [ "physics.flu-dyn" ], "abstract": "Velocity distribution functions link the micro- and macro-level theories of fluid flow through porous media. Here we study them for the fluid absolute velocity and its longitudinal and lateral components relative to the macroscopic flow direction in a model of a random porous medium. We claim that all distributions follow the power exponential law controlled by an exponent $\\gamma$ and a shift parameter $u_0$ and examine how these parameters depend on the porosity. We find that $\\gamma$ has a universal value $1/2$ at the percolation threshold and grows with the porosity, but never exceeds 2.", "revisions": [ { "version": "v1", "updated": "2015-09-16T10:20:07.000Z" } ], "analyses": { "keywords": [ "porous medium", "power exponential velocity distributions", "disordered porous media", "velocity distribution functions link", "macroscopic flow direction" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }