{ "id": "1509.04561", "version": "v1", "published": "2015-09-15T14:02:51.000Z", "updated": "2015-09-15T14:02:51.000Z", "title": "A variational approach to the Yau-Tian-Donaldson conjecture", "authors": [ "Robert Berman", "Sébastien Boucksom", "Mattias Jonsson" ], "comment": "9 pages", "categories": [ "math.DG", "math.AG" ], "abstract": "We give a new proof of a uniform version of the Yau-Tian-Donaldson conjecture for Fano manifolds with finite automorphism group, and of the semistable case of the conjecture. Our approach does not involve the continuity method or Cheeger-Colding-Tian theory. Instead, the proof is variational and uses pluripotential theory and certain non-Archimedean considerations.", "revisions": [ { "version": "v1", "updated": "2015-09-15T14:02:51.000Z" } ], "analyses": { "subjects": [ "53C55", "14J45", "32P05", "32Q20", "32Q26" ], "keywords": [ "yau-tian-donaldson conjecture", "variational approach", "finite automorphism group", "fano manifolds", "non-archimedean considerations" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150904561B" } } }