{ "id": "1509.04188", "version": "v1", "published": "2015-09-14T16:37:39.000Z", "updated": "2015-09-14T16:37:39.000Z", "title": "How far can you see in a forest?", "authors": [ "Faustin Adiceam" ], "comment": "This is an extended version of a paper to appear", "categories": [ "math.NT" ], "abstract": "We address a visibility problem posed by Solomon & Weiss. More precisely, in any dimension $n := d + 1 \\ge 2$, we construct a forest $\\F$ with finite density satisfying the following condition : if $\\e > 0$ denotes the radius common to all the trees in $\\F$, then the visibility $\\V$ therein satisfies the estimate $\\V(\\e) = O(\\e^{-2d-\\eta})$ for any $\\eta > 0$, no matter where we stand and what direction we look in. The proof involves Fourier analysis and sharp estimates of exponential sums.", "revisions": [ { "version": "v1", "updated": "2015-09-14T16:37:39.000Z" } ], "analyses": { "subjects": [ "11J71", "11J25", "11L03", "11L07", "11Z05", "51N20" ], "keywords": [ "exponential sums", "visibility problem", "sharp estimates", "fourier analysis", "radius common" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }