{ "id": "1509.03448", "version": "v1", "published": "2015-09-11T10:10:08.000Z", "updated": "2015-09-11T10:10:08.000Z", "title": "A randomized first-passage problem for drifted Brownian motion subject to hold and jump from a boundary", "authors": [ "Mario Abundo" ], "categories": [ "math.PR" ], "abstract": "We study an inverse first-passage-time problem for Wiener process $X(t)$ subject to hold and jump from a boundary $c.$ Let be given a threshold $S>X(0) \\ge c,$ and a distribution function $F$ on $[0, + \\infty ).$ The problem consists in finding the distribution of the holding time at $c$ and the distribution of jumps from $c,$ so that the first-passage time of $X(t)$ through $S$ has distribution $F.$", "revisions": [ { "version": "v1", "updated": "2015-09-11T10:10:08.000Z" } ], "analyses": { "subjects": [ "60J60", "60H05", "60H10" ], "keywords": [ "drifted brownian motion subject", "randomized first-passage problem", "inverse first-passage-time problem", "first-passage time", "problem consists" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150903448A" } } }