{ "id": "1509.03130", "version": "v1", "published": "2015-09-10T12:50:11.000Z", "updated": "2015-09-10T12:50:11.000Z", "title": "On some degenerate non-local parabolic equation associated with the fractional $p$-Laplacian", "authors": [ "Ciprian G. Gal", "Mahamadi Warma" ], "comment": "25 pages", "categories": [ "math.AP" ], "abstract": "We consider a degenerate parabolic equation associated with the fractional $% p $-Laplace operator $\\left( -\\Delta \\right) _{p}^{s}$\\ ($p\\geq 2$, $s\\in \\left( 0,1\\right) $) and a monotone perturbation growing like $\\left\\vert s\\right\\vert ^{q-2}s,$ $q>p$ and with bad sign at infinity as $\\left\\vert s\\right\\vert \\rightarrow \\infty $. We show the existence of locally-defined strong solutions to the problem with any initial condition $u_{0}\\in L^{r}(\\Omega )$ where $r\\geq 2$ satisfies $r>N(q-p)/sp$. Then, we prove that finite time blow-up is possible for these problems in the range of parameters provided for $r,p,q$ and the initial datum $u_0$.", "revisions": [ { "version": "v1", "updated": "2015-09-10T12:50:11.000Z" } ], "analyses": { "subjects": [ "35R11", "35K55", "35K65" ], "keywords": [ "degenerate non-local parabolic equation", "fractional", "degenerate parabolic equation", "finite time blow-up", "monotone perturbation" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150903130G" } } }