{ "id": "1509.02738", "version": "v1", "published": "2015-09-09T11:54:38.000Z", "updated": "2015-09-09T11:54:38.000Z", "title": "Concordance maps in knot Floer homology", "authors": [ "Andras Juhasz", "Marco Marengon" ], "comment": "36 pages, 3 figures", "categories": [ "math.GT" ], "abstract": "We show that a decorated knot concordance $C$ from $K$ to $K'$ induces a homomorphism $F_C$ on knot Floer homology that preserves the Alexander and Maslov gradings. Furthermore, it induces a morphism of the spectral sequences to $\\widehat{HF}(S^3) \\cong \\mathbb{Z}_2$ that agrees with $F_C$ on the $E^1$ page and is the identity on the $E^\\infty$ page. It follows that $F_C$ is non-vanishing on $\\widehat{HFK}_0(K, \\tau(K))$. We also obtain an invariant of slice disks in homology 4-balls bounding $S^3$. If $C$ is invertible, then $F_C$ is injective, hence $\\dim \\widehat{HFK}_j(K,i) \\le \\dim \\widehat{HFK}_j(K',i)$ for every $i$, $j \\in \\mathbb{Z}$. This implies an unpublished result of Ruberman that if there is an invertible concordance from the knot $K$ to $K'$, then $g(K) \\le g(K')$, where $g$ denotes the Seifert genus. Furthermore, if $g(K) = g(K')$ and $K'$ is fibred, then so is $K$.", "revisions": [ { "version": "v1", "updated": "2015-09-09T11:54:38.000Z" } ], "analyses": { "subjects": [ "57M27", "57R58" ], "keywords": [ "knot floer homology", "concordance maps", "maslov gradings", "seifert genus", "spectral sequences" ], "note": { "typesetting": "TeX", "pages": 36, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150902738J" } } }