{ "id": "1509.02326", "version": "v1", "published": "2015-09-08T11:19:52.000Z", "updated": "2015-09-08T11:19:52.000Z", "title": "Quasiopen and p-path open sets, and characterizations of quasicontinuity", "authors": [ "Anders Björn", "Jana Björn", "Jan Malý" ], "comment": "17 pages", "categories": [ "math.FA", "math.AP" ], "abstract": "In this paper we give various characterizations of quasiopen sets and quasicontinuous functions on metric spaces. For complete metric spaces equipped with a doubling measure supporting a p-Poincar\\'e inequality we show that quasiopen and p-path open sets coincide. Under the same assumptions we show that all Newton-Sobolev functions on quasiopen sets are quasicontinuous.", "revisions": [ { "version": "v1", "updated": "2015-09-08T11:19:52.000Z" } ], "analyses": { "subjects": [ "31E05", "28A05", "30L99", "31C15", "31C40", "31C45", "46E35" ], "keywords": [ "characterizations", "quasiopen sets", "p-path open sets coincide", "quasicontinuity", "complete metric spaces" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }