{ "id": "1509.02251", "version": "v1", "published": "2015-09-08T04:21:05.000Z", "updated": "2015-09-08T04:21:05.000Z", "title": "Coupling and an application to level-set percolation of the Gaussian free field", "authors": [ "Alain-Sol Sznitman" ], "comment": "28 pages", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We consider a general enough set-up and obtain a refinement of the coupling between the Gaussian free field and random interlacements recently constructed by Titus Lupu in arXiv:1402.0298. We apply our results to level-set percolation of the Gaussian free field on a $(d+1)$-regular tree, when $d \\ge 2$, and derive bounds on the critical value $h_*$. In particular, we show that $0 < h_* < \\sqrt{2u_*}$, where $u_*$ denotes the critical level for the percolation of the vacant set of random interlacements on a $(d+1)$-regular tree.", "revisions": [ { "version": "v1", "updated": "2015-09-08T04:21:05.000Z" } ], "analyses": { "subjects": [ "60K35", "60G15", "60J27", "60J80", "82B43" ], "keywords": [ "gaussian free field", "level-set percolation", "regular tree", "random interlacements", "application" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150902251S" } } }