{ "id": "1509.02143", "version": "v1", "published": "2015-09-07T19:08:14.000Z", "updated": "2015-09-07T19:08:14.000Z", "title": "Monotone Paths in Dense Edge-Ordered Graphs", "authors": [ "Kevin G. Milans" ], "comment": "11 pages", "categories": [ "math.CO" ], "abstract": "The altitude of a graph $G$, denoted $f(G)$, is the largest integer $k$ such that under each ordering of $E(G)$, there exists a path of length $k$ which traverses edges in increasing order. In 1971, Chv\\'atal and Koml\\'os asked for $f(K_n)$, where $K_n$ is the complete graph on $n$ vertices. In 1973, Graham and Kleitman proved that $f(K_n) \\ge \\sqrt{n - 3/4} - 1/2$ and in 1984, Calderbank, Chung, and Sturtevant proved that $f(K_n) \\le (\\frac{1}{2} + o(1))n$. We show that $f(K_n) \\ge (\\frac{1}{20} - o(1))(n/\\lg n)^{2/3}$.", "revisions": [ { "version": "v1", "updated": "2015-09-07T19:08:14.000Z" } ], "analyses": { "subjects": [ "05C35", "05C38" ], "keywords": [ "dense edge-ordered graphs", "monotone paths", "largest integer", "complete graph", "traverses edges" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }