{ "id": "1509.02068", "version": "v1", "published": "2015-09-07T15:00:46.000Z", "updated": "2015-09-07T15:00:46.000Z", "title": "The Besov Capacity In Metric Spaces", "authors": [ "Juho Nuutinen" ], "categories": [ "math.FA" ], "abstract": "We study a capacity theory based on a definition of Haj{\\l} asz-Besov functions. We prove several properties of this capacity in the general setting of a metric space equipped with a doubling measure. The main results of the paper are lower bound and upper bound estimates for the capacity in terms of a modified Netrusov-Hausdorff content. Important tools are $\\gamma$-medians, for which we also prove a new version of a Poincar\\'e type inequality.", "revisions": [ { "version": "v1", "updated": "2015-09-07T15:00:46.000Z" } ], "analyses": { "keywords": [ "metric space", "besov capacity", "poincare type inequality", "upper bound estimates", "important tools" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150902068N" } } }