{ "id": "1509.01952", "version": "v1", "published": "2015-09-07T09:03:23.000Z", "updated": "2015-09-07T09:03:23.000Z", "title": "On the critical one component regularity for 3-D Navier-Stokes system: general case", "authors": [ "Jean-Yves Chemin", "Ping Zhang", "Zhifei Zhang" ], "comment": "arXiv admin note: text overlap with arXiv:1310.6442", "categories": [ "math.AP" ], "abstract": "Let us consider an initial data $v_0$ for the homogeneous incompressible 3D Navier-Stokes equation with vorticity belonging to $L^{\\frac 32}\\cap L^2$. We prove that if the solution associated with $v_0$ blows up at a finite time $T^\\star$, then for any $p$ in $]4,\\infty[$, and any unit vector $e$ of $\\R^3$, the $L^p$ norm in time with value in $\\dot{H}^{\\frac 12+\\frac 2 p }$ of $(v|e)_{\\R^3}$ blows up at $T^\\star$", "revisions": [ { "version": "v1", "updated": "2015-09-07T09:03:23.000Z" } ], "analyses": { "subjects": [ "35Q30", "76D03" ], "keywords": [ "navier-stokes system", "component regularity", "general case", "homogeneous incompressible 3d navier-stokes equation", "unit vector" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150901952C" } } }