{ "id": "1509.01841", "version": "v1", "published": "2015-09-06T18:20:41.000Z", "updated": "2015-09-06T18:20:41.000Z", "title": "On the Edge-Balanced Index Sets of Complete Even Bipartite Graphs", "authors": [ "Ha Dao", "Hung Hua", "Michael Ngo", "Christopher Raridan" ], "comment": "8 pages, 1 figure", "categories": [ "math.CO" ], "abstract": "In 2009, Kong, Wang, and Lee introduced the problem of finding the edge-balanced index sets ($EBI$) of complete bipartite graphs $K_{m,n}$, where they examined the cases $n=1$, $2$, $3$, $4$, $5$ and the case $m=n$. Since then the problem of finding $EBI(K_{m,n})$, where $m \\geq n$, has been completely resolved for the $m,n=$ odd, odd and odd, even cases. In this paper we find the edge-balanced index sets for complete bipartite graphs where both parts have even cardinality.", "revisions": [ { "version": "v1", "updated": "2015-09-06T18:20:41.000Z" } ], "analyses": { "subjects": [ "05C78", "05C25" ], "keywords": [ "edge-balanced index sets", "complete bipartite graphs", "cardinality" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150901841D" } } }