{ "id": "1509.01783", "version": "v1", "published": "2015-09-06T08:00:01.000Z", "updated": "2015-09-06T08:00:01.000Z", "title": "Lyapunov Functions for Reflected Jump-Diffusions", "authors": [ "Andrey Sarantsev" ], "comment": "26 pages. Keywords: Jump-diffusion processes, reflected diffusions, oblique reflection, positive orthant, reflected jump-diffusions, Lyapunov function, uniform ergodicity, tail estimate, stationary distribution, stochastic ordering, jump measures, competing Levy particles, gap process. arXiv admin note: text overlap with arXiv:1509.01781", "categories": [ "math.PR" ], "abstract": "For a multidimensional jump-diffusion process, we construct a Lyapunov function and prove its exponential ergodicity. We do the same for obliquely reflected jump-diffusion processes in the positive orthant, extending results of Atar, Budhiraja and Dupuis (2001). We apply these results to systems of competing L\\'evy particles, introduced in Shkolnikov (2011).", "revisions": [ { "version": "v1", "updated": "2015-09-06T08:00:01.000Z" } ], "analyses": { "subjects": [ "60J60", "60J55", "60J75", "60G51", "60J65", "60H10", "60K35" ], "keywords": [ "lyapunov function", "multidimensional jump-diffusion process", "exponential ergodicity", "obliquely reflected jump-diffusion processes", "competing levy particles" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable" } } }