{ "id": "1509.01560", "version": "v1", "published": "2015-09-04T18:47:38.000Z", "updated": "2015-09-04T18:47:38.000Z", "title": "Diophantine approximation of polynomials over $\\mathbb{F}_q[t]$ satisfying a divisibility condition", "authors": [ "Shuntaro Yamagishi" ], "categories": [ "math.NT" ], "abstract": "Let $\\mathbb{F}_q[t]$ denote the ring of polynomials over $\\mathbb{F}_q$, the finite field of $q$ elements. We prove an estimate for fractional parts of polynomials over $\\mathbb{F}_q[t]$ satisfying a certain divisibility condition analogous to that of intersective polynomials in the case of integers. We then extend our result to consider linear combinations of such polynomials as well.", "revisions": [ { "version": "v1", "updated": "2015-09-04T18:47:38.000Z" } ], "analyses": { "keywords": [ "diophantine approximation", "satisfying", "finite field", "fractional parts", "linear combinations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150901560Y" } } }