{ "id": "1509.00550", "version": "v1", "published": "2015-09-02T02:59:53.000Z", "updated": "2015-09-02T02:59:53.000Z", "title": "A family of $m$-ovoids of parabolic quadrics", "authors": [ "Tao Feng", "Koji Momihara", "Qing Xiang" ], "comment": "10 pages", "categories": [ "math.CO" ], "abstract": "We construct a family of $\\frac{(q-1)}{2}$-ovoids of $Q(4,q)$, the parabolic quadric of $\\textup{PG}(4,q)$, for $q\\equiv 3\\pmod 4$. The existence of $\\frac{(q-1)}{2}$-ovoids of $Q(4,q)$ was only known for $q=3, 7,$ or $11$. Our construction provides the first infinite family of $\\frac{(q-1)}{2}$-ovoids of $Q(4,q)$.", "revisions": [ { "version": "v1", "updated": "2015-09-02T02:59:53.000Z" } ], "analyses": { "keywords": [ "parabolic quadric", "construction", "first infinite family" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150900550F" } } }