{ "id": "1509.00546", "version": "v1", "published": "2015-09-02T02:25:52.000Z", "updated": "2015-09-02T02:25:52.000Z", "title": "A characterization of cut locus for $C^1$-hypersurfaces", "authors": [ "Tatsuya Miura" ], "comment": "10 pages, 3 figures", "categories": [ "math.AP" ], "abstract": "Let $\\Omega$ be an open set in $\\mathbb{R}^n$ with $C^1$-boundary. Let $\\Sigma$ be the skeleton of $\\Omega$, that is, the set $\\Sigma$ consists of points where the distance function to $\\partial\\Omega$ is not differentiable. This paper characterizes the cut locus (ridge) $\\overline{\\Sigma}$, which is the closure of $\\Sigma$, by introducing the lower semicontinuous envelope of radius of curvature of the boundary $\\partial\\Omega$.", "revisions": [ { "version": "v1", "updated": "2015-09-02T02:25:52.000Z" } ], "analyses": { "subjects": [ "26B05", "53A05" ], "keywords": [ "cut locus", "characterization", "hypersurfaces", "lower semicontinuous envelope", "open set" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }