{ "id": "1509.00528", "version": "v1", "published": "2015-09-02T00:10:16.000Z", "updated": "2015-09-02T00:10:16.000Z", "title": "Torsion subgroups of rational elliptic curves over the compositum of all cubic fields", "authors": [ "Harris B. Daniels", "Alvaro Lozano-Robledo", "Filip Najman", "Andrew V. Sutherland" ], "comment": "31 pages", "categories": [ "math.NT" ], "abstract": "Let $E/\\mathbb{Q}$ be an elliptic curve and let $\\mathbb{Q}(3^\\infty)$ be the compositum of all cubic extensions of $\\mathbb{Q}$. In this article we show that the torsion subgroup of $E(\\mathbb{Q}(3^\\infty))$ is finite and determine 20 possibilities for its structure, along with a complete description of the $\\overline{\\mathbb{Q}}$-isomorphism classes of elliptic curves that fall into each case. We provide rational parameterizations for each of the 16 torsion structures that occur for infinitely many $\\overline{\\mathbb{Q}}$-isomorphism classes of elliptic curves, and a complete list of $j$-invariants for each of the 4 that do not.", "revisions": [ { "version": "v1", "updated": "2015-09-02T00:10:16.000Z" } ], "analyses": { "subjects": [ "11G05", "11R21", "12F10", "14H52" ], "keywords": [ "rational elliptic curves", "torsion subgroup", "cubic fields", "compositum", "isomorphism classes" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150900528D" } } }