{ "id": "1509.00003", "version": "v1", "published": "2015-08-31T20:00:22.000Z", "updated": "2015-08-31T20:00:22.000Z", "title": "LAN property for stochastic differential equations with additive fractional noise and continuous time observation", "authors": [ "Eulalia Nualart", "Samy Tindel" ], "categories": [ "math.PR" ], "abstract": "We consider a stochastic differential equation with additive fractional noise of Hurst parameter $H>1/2$, and a non-linear drift depending on an unknown parameter. We show the Local Asymptotic Normality property (LAN) of this parametric model with rate $\\sqrt{\\tau}$ as $\\tau\\rightarrow \\infty$, when the solution is observed continuously on the time interval $[0,\\tau]$. The proof uses ergodic properties of the equation and a Poincar\\'e type inequality.", "revisions": [ { "version": "v1", "updated": "2015-08-31T20:00:22.000Z" } ], "analyses": { "keywords": [ "stochastic differential equation", "additive fractional noise", "continuous time observation", "lan property", "local asymptotic normality property" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }