{ "id": "1508.07966", "version": "v1", "published": "2015-08-31T19:18:49.000Z", "updated": "2015-08-31T19:18:49.000Z", "title": "Invariance principles for random walks in cones", "authors": [ "Jetlir Duraj", "Vitali Wachtel" ], "categories": [ "math.PR" ], "abstract": "We prove invariance principles for a mulditimensional random walk conditioned to stay in a cone. Our first result concerns convergence towards the Brownian meander in the cone. Furthermore, we prove functional convergence of $h$-transformed random walk to the corresponding $h$-transform of the Brownian motion. Finally, we prove an invariance principle for bridges of a random walk in a cone.", "revisions": [ { "version": "v1", "updated": "2015-08-31T19:18:49.000Z" } ], "analyses": { "subjects": [ "60G50", "60G40", "60F17" ], "keywords": [ "invariance principle", "first result concerns convergence", "mulditimensional random walk", "brownian meander", "functional convergence" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150807966D" } } }