{ "id": "1508.07641", "version": "v1", "published": "2015-08-30T21:53:03.000Z", "updated": "2015-08-30T21:53:03.000Z", "title": "Homogenization of nonstationary Schrödinger type equations with periodic coefficients", "authors": [ "Tatiana Suslina" ], "comment": "78 pages", "categories": [ "math.AP" ], "abstract": "In $L_2(\\mathbb{R}^d;{\\mathbb C}^n)$ we consider selfadjoint strongly elliptic second order differential operators ${\\mathcal A}_\\varepsilon$ with periodic coefficients depending on ${\\mathbf x}/\\varepsilon$. We study the behavior of the operator exponential $\\exp(-i {\\mathcal A}_\\varepsilon \\tau)$, $\\tau \\in {\\mathbb R}$, for small $\\varepsilon$. Approximations for this exponential in the $(H^s\\to L_2)$-operator norm with a suitable $s$ are obtained. The results are applied to study the behavior of the solution ${\\mathbf u}_\\varepsilon$ of the Cauchy problem for the Schr\\\"odinger type equation $i \\partial_\\tau {\\mathbf u}_\\varepsilon = {\\mathcal A}_\\varepsilon {\\mathbf u}_\\varepsilon$.", "revisions": [ { "version": "v1", "updated": "2015-08-30T21:53:03.000Z" } ], "analyses": { "subjects": [ "35B27" ], "keywords": [ "nonstationary schrödinger type equations", "periodic coefficients", "strongly elliptic second order", "elliptic second order differential operators", "homogenization" ], "note": { "typesetting": "TeX", "pages": 78, "language": "en", "license": "arXiv", "status": "editable" } } }