{ "id": "1508.07608", "version": "v1", "published": "2015-08-30T18:11:49.000Z", "updated": "2015-08-30T18:11:49.000Z", "title": "Relative complements and a `switch'-classification of simple graphs", "authors": [ "Elżbieta Błaszko", "Małgorzata Prażmowska", "Krzysztof Prażmowski" ], "categories": [ "math.CO" ], "abstract": "In the paper we introduce and study a classification of finite (simple, undirected, loopless) graphs with respect to a switch-equivalence (`local-complement' equivalence of \\cite{pascvebl}, an analogue of the complement-equivalence of \\cite{conell}). In the paper we propose a simple inductive method to compute the number of switch-types of graphs on $n$ vertices and we show that there are exactly 16 such types of graphs on 6 vertices.", "revisions": [ { "version": "v1", "updated": "2015-08-30T18:11:49.000Z" } ], "analyses": { "subjects": [ "05C76" ], "keywords": [ "simple graphs", "relative complements", "simple inductive method", "local-complement", "complement-equivalence" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150807608B" } } }