{ "id": "1508.07474", "version": "v1", "published": "2015-08-29T16:31:26.000Z", "updated": "2015-08-29T16:31:26.000Z", "title": "Entropy rigidity of Hilbert and Riemannian metrics", "authors": [ "Thomas Barthelmé", "Ludovic Marquis", "Andrew Zimmer" ], "comment": "14 pages, comments welcome", "categories": [ "math.DG" ], "abstract": "In this paper we provide two new characterizations of real hyperbolic $n$-space using the Poincar\\'e exponent of a discrete group and the volume growth entropy. The first characterization is in the space of Hilbert metrics and generalizes a result of Crampon. The second is in the space of Riemannian metrics with Ricci curvature bounded below and generalizes a result of Ledrappier and Wang.", "revisions": [ { "version": "v1", "updated": "2015-08-29T16:31:26.000Z" } ], "analyses": { "keywords": [ "riemannian metrics", "entropy rigidity", "volume growth entropy", "real hyperbolic", "poincare exponent" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150807474B" } } }