{ "id": "1508.07427", "version": "v1", "published": "2015-08-29T10:09:33.000Z", "updated": "2015-08-29T10:09:33.000Z", "title": "A partial reciprocal of Dirichlet Lagrange Theorem detected by Jets", "authors": [ "G. J. Alva", "M. V. P. Garcia" ], "categories": [ "math.CA" ], "abstract": "We study the stability of an equilibrium point in a conservative Hamiltonian system in the case that equilibrium is not a minimum of the potential energy and this fact is shown by a jet of this function. Thanks to a modification of a result of Krasovskii, we prove that for a large class of systems under these conditions equilibrium is unstable and there is an asymptotic trajectory to that point.", "revisions": [ { "version": "v1", "updated": "2015-08-29T10:09:33.000Z" } ], "analyses": { "subjects": [ "93D05", "34D20", "34D05" ], "keywords": [ "dirichlet lagrange theorem", "partial reciprocal", "conservative hamiltonian system", "equilibrium point", "potential energy" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150807427A" } } }