{ "id": "1508.07102", "version": "v1", "published": "2015-08-28T05:55:34.000Z", "updated": "2015-08-28T05:55:34.000Z", "title": "The Calderón problem with partial data for conductivities with $3/2$ derivatives", "authors": [ "Katya Krupchyk", "Gunther Uhlmann" ], "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "We extend a global uniqueness result for the Calder\\'on problem with partial data, due to Kenig-Sj\\\"ostrand-Uhlmann, to the case of less regular conductivities. Specifically, we show that in dimensions $n\\ge 3$, the knowledge of the Diricihlet-to-Neumann map, measured on possibly very small subsets of the boundary, determines uniquely a conductivity having essentially $3/2$ derivatives.", "revisions": [ { "version": "v1", "updated": "2015-08-28T05:55:34.000Z" } ], "analyses": { "subjects": [ "35R30", "35J25" ], "keywords": [ "partial data", "calderón problem", "conductivity", "derivatives", "global uniqueness result" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150807102K" } } }